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A general theory which can be used to derive bounds on solutions to the Navier--Stokes 
equations is presented. The behaviour of the resolvent of the linear operator in the 
unstable half-plane is used to bound the energy growth of the full nonlinear problem. 
Plane Couette flow is used as an example. The norm of the resolvent in plane Couette 
flow in the unstable half-plane is proportional to the square of the Reynolds number 
(R) .  This is now used to predict the asymptotic behaviour of the threshold amplitude 
below which all disturbances eventually decay. A lower bound is found to be R--21'4. 
Examples, obained through direct numerical simulation, give an upper bound on the 
threshold curve, and predict a threshold of R-l. The discrepancy is discussed in the 
light of a model problem. 

1. Introduction 
Stability of flows to finite-amplitude disturbances has been the focus of numerous 

investigations. For parameter values allowing linear instability all perturbations, save 
for a few fulfilling certain symmetries, will lead to sustained non-vanishing solutions. 
On the other hand, for other parameter values it is possible to show that all 
disturbances vanish in some suitable metric. In between these values, in what for shear 
flows is called the subcritical Reynolds-number regime, the stability depends both on 
the form and the amplitude of the perturbation. Here, very few results pertinent to 
anything but specific disturbances are available. 

The Reynolds-Orr equation, which describes the evolution of the disturbance energy 
with respect to a base flow satisfying the incompressible Navier-Stokes equations 
(Reynolds 1895; Orr 1907), shows that the smallest Reynolds number for which energy 
growth may occur is independent of the amplitude. This equation was used by Serrin 
(1959) to prove that below the Reynolds number 5.71 (based on the maximum velocity 
of the base flow and the maximum diameter of the domain) all disturbances exhibit 
monotonic decay of the energy. Similar results were shown for geometries where the 
flow domain was bounded in at least one direction. Applying the same approach 
Joseph (1966) derived the exact lower limit on Reynolds number for disturbance energy 
growth in plane Couette flow. This theory can be extended to other parallel shear flows, 
as well as flows satisfying the Boussinesq equations for thermal convection (Joseph 
1976). We will denote the critical parameter value given by this energy theory as RE. 

For Benard convection in the Boussinesq approximation and with non-slip boundary 
conditions, Joseph (1965) showed that RE coincides with the critical Rayleigh number 



176 G. Kreiss, A .  Lundbladh and D.  S. Henningson 

(R,) for growth of eigenmodes of the linearized problem. In what follows R, may 
denote either this critical Rayleigh number or the corresponding critical Reynolds 
number. Davis (1969) found that R, differed from RE if the problem has a free surface 
with surface tension and that the difference could be changed by varying the surface 
tension parameter. He found that RE was determined from the self-adjoint part of the 
linear operator. This is in general true for problems with nonlinearities arising from the 
convective terms (Galdi & Straughan 1985). Reddy & Henningson (1993) pointed out 
that the linear operator need not be self-adjoint for RE = R,, but that a sufficient 
condition for this to hold is that it is normal, i.e. that it commutes with its adjoint. For 
parallel shear flows the non-normality of the linear operator increases exponentially 
with the Reynolds number? (Reddy, Schmid & Henningson 1993) and RE and R, may 
be separated by more than two orders of magnitude, as for example for plane Poiseuille 
flow. R, may also approach infinity, as is the case in plane Couette flow (Romanov 
1973; Herron 1991). For problems governed by non-normal operators with a 
subcritical Reynolds number range (RE < R < RL) few nonlinear stability results exist. 

In the subcritical Reynolds-number regime it has been shown that solutions to the 
linearized problem may experience growth. For parallel shear flows this transient 
energy growth scales with the square of the Reynolds number and can take on large 
values before the decay predicted by the eigenvalues sets in (Gustavsson 1991; Butler 
& Farrell 1992; Reddy & Henningson 1993). The disturbances that experience 
maximum growth rates are streamwise vortices which in Fourier space are associated 
with low streamwise wavenumbers. 

Recent numerical simulations of transition in plane Poiseuille flow (Henningson, 
Lundbladh & Johansson 1993; Schmid & Henningson 1992) show that the mechanism 
responsible for the subcritical growth may also supply finite-amplitude disturbances 
with energy. The energy gain that occurs in Fourier components with small streamwise 
wavenumbers is transferred to larger wavenumbers, rapidly making the flow turbulent. 
In fact, it follows from the Reynolds-Orr equation that the total disturbance energy 
can only grow from the effect of the linearized operator and that the nonlinear terms 
solely transfer energy among the wavenumbers. 

One of the conventional ways of assessing the nonlinear properties of systems of 
dynamical equations is to follow stationary solutions. For Benard convection Gor’kov 
(1957) and Malkus & Veronis (1958) independently found steady nonlinear solutions 
close to the linearly critical Rayleigh number. Since RE = R, in this flow, the 
bifurcation from the null solution into the finite-amplitude state is supercritical and the 
predicted solutions are in general stable, allowing them to be observed experimentally. 
For parallel shear flows Stuart (1960) and Watson (1960) derived the Landau equation, 
valid close to R,, and showed that the bifurcation is subcritical. Herbert (1983) 
reviewed weakly nonlinear theory and showed that the radius of convergence of such 
expansions in shear flows is prohibitively small. 

Solutions to the nonlinear problem can also be found directly without assuming that 
the amplitude is small. For two-dimensional disturbances in plane Poiseuille flow 
Meksyn & Stuart (1951), using an approximate method, demonstrated that two- 
dimensional waves of finite amplitude are unstable down to a Reynolds number about 
half of the linearly critical one. Based on these results Grohne (1969) and Zahn et al. 

1- A normal operator or matrix has orthogonal eigenfunctions. The condition number of the matrix 
containing the normalized eigenvectors as column vectors thus has the value one. For non-normal 
matrices the condition number is greater than one and can be used as a measure of non-normality. 
An operator can be projected onto an appropriate finite-dimensional subspace where the same 
measure of non-normality may be used. 
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(1 974) numerically calculated two-dimensional and some three-dimensional steady- 
state finite-amplitude solutions. The latter being a rather computationally intensive 
task, only recently have more accurate steady three-dimensional finite-amplitude 
solutions for this flow become available (Ehrenstein & Koch 1991). 

Since R, approaches infinity for plane Couette flow, weakly nonlinear solutions are 
not possible, and apparently neither are steady two-dimensional solutions (Cowley & 
Smith 1985). Nagata (1 990), however, has provided three-dimensional finite-amplitude 
solutions by starting with Taylor-Couette flow in the narrow-gap approximation, and 
letting the system rotation vanish. 

Apart from the energy methods, results for general disturbances can be derived by 
considering the resolvent of the linearized operator, i.e. the solution operator of the 
Laplace-transformed problem. In this way Romanov (1 973) proved nonlinear stability 
of plane Couette flow, and Yudovich (1989) established the decay of solutions of the 
Navier-Stokes equations without forcing. In both cases the proofs rely on the theory 
of sectorial operators in which the size of the resolvent has to be estimated, not only 
in the unstable half-plane, Re (s) 2 0, where s is the Laplace transform parameter, but 
also in sectors of the stable half-plane. Neither Romanov nor Yudovich give a 
threshold amplitude, one reason being that the authors do not investigate the 
Reynolds-number dependence of the norm of the resolvent. The latter has recently 
been investigated for parallel shear flows by Reddy et al. (1993) and Trefethen et ul. 
(1993). In the latter study it was found that the maximum of the norm of the resolvent 
in the unstable half-plane for subcritical Reynolds numbers grows like the square of the 
Reynolds number. 

In the present paper some nonlinear stability results for subcritical shear flows are 
established. This is accomplished by deriving a lower bound on the threshold 
amplitude for non-vanishing solutions, which is valid for arbitrary forms of the initial 
disturbances. We use a technique similar to that of Kreiss, Kreiss & Peterson (1 992), 
but extended to three dimensions. They consider nonlinear parabolic, hyperbolic and 
mixed hyperbolic-parabolic problems in one dimension. For these equations they 
show that the existence of a bounded resolvent of the linearized operator in the 
unstable half-plane is sufficient for nonlinear stability, in effect easing the requirement 
obtained by sectorial operator theory. A bounded resolvent implies an estimate of the 
solution of the corresponding linear problem on the Laplace transform side. By the 
Parseval relation this estimate leads to an energy estimate for the linear problem. The 
energy estimate is then extended to the nonlinear problem. A lower bound for the 
threshold amplitude also follows. 

The presented results are applied to plane Couette flow, for which we calculate the 
required resolvent estimate numerically. The resulting threshold is compared to an 
upper bound obtained by numerical simulations. Finally, using a model problem, we 
discuss various ways to improve the theoretical bound. 

2. General threshold bound 
For flow in a parallel channel we will in this section derive a lower bound for the 

amplitude below which all perturbations eventually decay. First the perturbation 
equation together with suitable norms are introduced. For the straightforward 
application of the Laplace transform method the equation is written in a form with 
homogeneous initial conditions. Then we derive a bound of the solution to the 
linearized problem, theorem 1. The bound is given in terms of the magnitude of the 
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forcing function and the norm of the resolvent. The resolvent is the Laplace- 
transformed solution operator to the linearized initial value problem. 

Next the linear bound is applied to the nonlinear problem where the nonlinear terms 
are added to the forcing function, theorem 2. In order that the nonlinear terms should 
not destroy the bound the solution must be sufficiently small. From this requirement 
a bound on the threshold amplitude follows. Finally the estimate is applied to the 
original nonlinear initial value problem, theorems 3 and 4. 

2.1. Notation 
Consider the non-dimensionalized Navier-Stokes equations for incompressible, 
constant-density flow on some domain D : 

U, = R-~V’U - G(u) - V p ,  x E D, t 2 0 , l  
(1) 

v - u  = 0. J 
Here u = (ul ,  u2, u3) are the velocity components in the three space directions, p is the 
pressure, R is the Reynolds number, 

v = (D,, D,, D,)T, D~ = a/axi, 
G(u)  = (U * V )  U. 

We also need initial conditions 
u(x, 0) =Ax). 

We will consider the periodic problem where the solution and all data are periodic in 
the x1 and the x3 directions. Let the periodicity be I ,  and 13, respectively, and introduce 

D = {x: - 1,/2 < X ,  < 11/2, - 1 < X ,  < 1, - 13/2 < x3 < 13/2} (3) 

with, possibly moving, solid walls at x, = k 1. In what follows, all estimates are 
independent of I ,  and 13, provided they are sufficiently large. Thus all results are valid 
also for a strip unbounded in the x1 and x3 directions. Boundary conditions are 

u(xl, - 1, x3, t )  = Y ,  el, u(x,, 1, x3, t )  = V, el. (4) 

Here e, is the unit vector in the ith space direction. For the Couette flow example in 
$ 3  v,=-v-, = 1. 

We can consider p as a known function of u, since 

V’p = - V * G ( u ) .  ( 5 )  
At the solid walls the normal derivative of p must satisfy 

D,p(xl, x2, x3)  = R-lD; u2(x1, x,, x3), x, = f 1. 

If the initial data are divergence free, i.e. V .f= 0, and the pressure is given by (5) ,  the 
solutions will continue to be divergence free for all times and we may drop the 
continuity equation. 

Let U and P be a steady solution of (l), and assume the initial condition to be of the 
form f =  U + f ,  where f’ is periodic and 0 . f ’  = 0. In what follows f’ will be 
normalized such that E represents a unique perturbation amplitude. Introduce 

u = U+&U*, p = P+&p;+&2p;, (6) 

into (1) and (5) ,  obtaining 
U; = ~Pu‘+EG(u’) -EVP; .  (7) 
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Here 9 is a linear operator, given by 

SU’ = R-lV2u’- ( U .  W) u‘-(u‘* 0) U -  Wp; 

and p i  is defined by 
v2p; = -w~(u-v)u‘-v~(u’*v) u, 

D,pi = RplD:uk at x, = f 1. 
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Note that p i  depends linearly on u‘. The remaining part of the pressure depends 
nonlinearly on u’ and satisfies 

V2pP;, = - W * G(u‘), 
D,pi = O  at x, = k l .  

Clearly u’ will satisfy the following boundary and initial conditions : 

u’(x,, - 1, x,, t )  = u’(x,, 1, x3,O = 0, 
u’(x, 0) =f’(x). 

We shall use the usual L, scalar product and norm corresponding to twice the 
perturbation energy, 

(u, u)  = jDu.udx,  llu112 = (u,u). 

In the estimation of the magnitude of solutions to the Navier-Stokes equations we will 
use the maximum norm to bound the nonlinear terms. The maximum norm can be 
related to an L, norm containing derivatives through a Sobolev inequality (Kreiss & 
Lorenz 1989). For our purposes the following form is suitable; 

where 
1 4 . 7  n2, < CsR~llu(*, m%, (10) 

IluIlB = 11u1l2 + R-lJ?(u) +Rp2(IID? u1I2 + llDt u/I2 + IID, D, u1I2 + IID,D, u1I2>, (1 1) 

Here C, does not depend on the periodicity 1, and 1, as long as 1, 2 1/Ri and l3 2 1/Ra. 
We want to derive conditions such that the base flow U is stable, i.e. 

lim 1 1  u’( * , t )  I( = 0, (13) 
t+m 

for all R when R + co. We shall use the method of Laplace transform. Therefore we 
transform ( 7 )  to a problem with homogeneous initial conditions by introducing 

u‘ = u + e-’Y. (14) 
Here S is some positive number. We obtain 

ut = 9 u  + EG(u+eP6tf,) + ~ V p i  + ePSt(9 + &of’,\ 
(15) 

u(x,O) = 0 ,  1 
where u satisfies the boundary conditions (8) and p i  is considered as a function of u 
using the appropriate Poisson equation. For simplicity we shall first consider 

U, = ~u+EG(u)+EV~L+F,\ 
u(x, 0) = 0. J 
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We assume F and its derivatives are in L,, and that for some constant 7 > 0, 
independent of R ,  

lim ezgt( 1 1  F( . , r ) l l z  + I/&(. , t) l j2) + 0. (17) 
t-.v- 

2.2. Bounds on the linear problem 
We start by considering the linear problem corresponding to (16) 

w, = 9 w  + H(x, t),l 
w(x, 0) = 0. 

Here H has the same properties as F. The Laplace transform of (18) is 

S 6  = 96+H.  (19) 

This equation is known as the resolvent equation, and we assume that the following 
resolvent condition is satisfied : 

1/6112 = 11(~/-9)-~&1\~ 6 K(R)  iiI?i12, (20) 

for all s with Re(s) 3 -y (R) .  Clearly K 3 I I ( S / - ~ ) ~ ~ ~ ~ ~ .  
Specifically, we shall consider 

11611 = 11(~/-9)-'&1\~ 6 CRPjlHjI2, p > 0,  (21) 

for all s with Re (s) 3 - y(R).  

Remark. The case p = 0 can also be treated. However, some technical details of the 
proofs will be different. 

Remark. If y 3 yo > 0 for all R it is possible to show exponential decay - ePot in 
(13), independent of R. However, in many cases y depends on R in such a way that 
y --f 0 when R + m . Then the rate of decay will depend on R. 

We start with an estimate for the linear problem (18). 

THEOREM 1. Assume there is a constant y (R)  E [0, y l ]  such that the resolvent condition 
(21) is satisfied for all s with Re(s) 3 - y .  Then 

+ i t  H( . , 0 )  /I 2 + RpC, / I  (61 + 9) H( . , 0 )  ll 2, + RPC, JOT eZyt( I1 H( . , t )  II + I1 Ht( . , t )  I1 '1 dt . 

Here S = y1  + 1 and C, and C, depend on the first and second derivatives of U and on the 
constant C in (21). 

The proof of the theorem is given in Appendix A. 

Remark. For the right-hand side of the inequality to be bounded for all T we must 
require that y > y l ,  see (17). 

In this theorem the amplitude of the solution to the linear problem is bounded in 
terms of the forcing function H. Note that for large R the last two terms on the right- 
hand side of the estimate in theorem 1 are dominant. If one is not interested in the 
exponential decay rate of the solution w we can consider y 1  = y = 0. Then the integral 
on the left-hand side still remains bounded as T+ m, ensuring that the solution decays. 
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2.3. Bounds on the nonlinear problem 
Now we consider the nonlinear problem (16). To prove all time bounds of the solution 
we will use a continuation technique, see Kreiss & Lorenz (1989). We shall prove that 
(1 6 )  has a solution satisfying 

e2yTllv(., T)I)z < RfK2,  (22) 

where C, / /  (61 + 9) F ( .  , 0)  jl + C, lnm ezy'( /I F / I  + I1 4 I1 ') di) 

for all T, provided E is sufficiently small. As above 6 = y1 + 1. Let E > 0 be fixed. Since 
u(x, 0) = 0 (22) is satisfied in an interval 0 6 T 6 T,, T, > 0. Choose T, as large as 
possible, that is (22) holds for all times, or at some time T, there is equality in (22). 
Consider T < T,. Note that G(u(.  , 0)) = 0 and VpL(. ,0) = 0. Since p ;  satisfies 
homogeneous boundary conditions, we have by integration by parts 

+ RPC, lnT ezyt( II F ( 1  + 2 2  II G( u )  I( + / /  4 I 1 + 2 2  ( 1  G( u), 11 ') dt . 

By (22) and (10) it follows that 

lIG(u)I12 d Iul~J12(u) 6 R%+pK2C,II~II&, 
IIG(u),lI2 < Iv,l",~(u)+lu12,J~(u,) d 2R%+PK2C,llu,II&. 

:e2yT llF( * ,  T )  / I  +:/IF(. , 0) 1 1  % 6 iRfK2.  
~ E ~ R ~ ~ + % K ~ C ,  C, 6 1, 

Clearly, if R is sufficiently large then 

Thus if 
then 2&211G112 6 ;ll~llz, 2&211G,l12 6 l l~,l l%, 

e2yTI(u(., T ) / ( k +  e2Yt((uI(&dt < ZRfK'. 

and if R is sufficiently large we have 

Clearly there is never equality in (22) which therefore holds for all T. This completes 
the proof of: 

THEOREM 2. Assume that there is a constant y(R)€[O, y,] such that the resolvent 
condition (21) is satisjied for all s with Re (s)  2 - y .  If E satisjies (28) then the nonlinear 
equation (1 6) has a solution satisfying (29) for  all suficiently large R. Here K is deJined 
by (23) and the constants C,, C, and C, are independent of the forcing F and of R. 

Next we shall treat the original problem (7) with inhomogeneous initial conditions. 
We assume that f' and its derivatives are in L,. Consider (15) with 6 = y1 + 1. We 
normalize the initial condition so that 

11(9+S/lf'l12 = 1. 
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In this case we can prove an estimate corresponding to (22) with 

K 2  = 2(C2(1 +S2)+2CC,). (30) 
As in the proof of theorem 2 we apply theorem 1 to (15) and we can prove the following 
theorem relating the amplitude of the initial disturbance, E, to R .  

THEOREM 3. Assume that there is a constant y (R)€[O,  y l ]  such that the resolvent 
condition (21) is satisfied for  all s with Re ( s )  3 - y .  Then for  all normalized initial 
conditions and all suficiently large R there is a solution of the nonlinear problem (7)  that 
satisJies (29) with K defined by (30), provided E d cR-Pf. Here c is some number 
independent of R and of the initial condition. 

The following weaker form of the theorem is useful if we are not interested in the 
decay rate of the disturbance. 

THEOREM 4. Assume that the resolvent condition (21) is satisjied for all s with Re (s) 
2 0. If 

1 1  (9 + 4 tf' 1 1  < cR-Pf 

and R is suflciently large then there is a solution of the nonlinear problem (7) that satisfies 
(13). Here c is some number independent of R and of the initial condition. 

3. Application to plane Couette flow 
To apply the theorems derived in the previous section to a specific base flow, a bound 

of the norm of the resolvent in the unstable half-plane is needed. This quantity must 
in general be calculated numerically. For plane Couette flow this has been performed 
by Reddy et al. (1993) and Trefethen et al. (1993). In this section we show a lower 
bound for the norm of the resolvent which by comparison to these numerical results 
proves to be sharp. The value of the norm of the resolvent is then applied to theorem 
4 to arrive at a lower bound for the threshold amplitude. 

3.1, The linear initial value problem for parallel shear flows 
The norm of the resolvent can be calculated from the solution of the linear initial value 
problem 

cf. (18). 
W t  = Z W ,  W ( X , O )  = Wo. (31) 

In parallel shear flows U, = U(x,)S,,. Expand the solution in a Fourier series 

where 01, = 2nm/l, and /3, = 27cn/13. In what follows the subscripts for the streamwise 
and spanwise wavenumbers will be dropped. Using (32), (18) can be reduced to one 
equation governing the normal velocity (G,) aqd one for the normal vorticity (g, = 
iPGl - i d 3 ) .  Introducing the vector 4 = (G,, c2)T the linearized equations can be 
written 

where ios = - iaU( - Di + k2) - iaDi U-  (- D,2 + k2)'/R, 

iss = -iaU-( -Di+k2)/R, 
(34 a> 

(34 b)  
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where k2 = ct2 + p2. The solution to (33) can be written formally as 

where & = = /LklL is the Fourier transformed linear evolution operator and &. 
and hi are its eigenfunctions and eigenvalues, respectively. The eigenvalues consist of 
both Orr-Sommerfeld and Squire modes. K~ are the coefficients in the eigenfunction 
expansion of the initial condition q,,. This expansion assumes that the eigenvalues are 
discrete and that the eigenfunctions form a complete set, both of which is true in the 
Couette flow case (DiPrima & Habetler 1969). The possibility of multiple roots has not 
been included although they have been found to occur (Gustavsson & Hultgren 1980). 
However, Reddy & Henningson (1993) have shown that (35) is sufficient in most 
numerical calculations. Multiple roots will not influence our results. 

The energy norm for one Fourier component of the disturbance is 

The total perturbation energy is recovered if the above expression is summed over 
all wavenumbers, 

fIIu't12 = 1113 C II6mnIIg, (37) 

If (33) is Laplace transformed one can, with the help of (3.9, find the following 
m, n 

expressions for the resolvent: 

where s is the Laplace transform variable. 

3.2. Scaled initial value problem 
The Reynolds-number dependence for the norm of the resolvent can be found by 
rescaling the linearized problem in the same way as Gustavsson (1991) and Reddy & 
Henningson (1993). If we introduce the new variables 

t* = t/R, S* = sR, & = &PR, t9; = g2 (39) 
we can rewrite (33) as 

where B* = (t9;,&)T and 
L& = -iaRU( -Di+ k2)-iaRDi U-( -Di +k2)2, 
i g Q  = -iaRU-(-Di+k2). (41 b) 

(41 a> 

In the scaled equations there are only two independent parameters, aR and k2,  instead 
of the three originally appearing, a, p and R. In analogy with the above notation we 
denote 5?ZR,& = M-'L*. 

In the new variables the resolvent can be written as 
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a R  

FIGURE 1 .  k ~ ~ @ ; ~ f l ~ ~ E / ( J R 2 )  for R = 500 (solid lines) and R = 1000 (dashed lines). The maximum is 
0.0152 which occurs at aR = 0 and k = 1.18. Contour spacing is 0.002. 

where q* is the scaled Laplace-transformed solution. The energy norm becomes 

(43) 
where I\$,* 11; and vZR2/2k2)  112 11’ are the energies associated with the Laplace- 
transformed normal velocity and the Laplace-transformed normal vorticity, re- 
spectively. 

3.3. The norm of the resolvent for  aR = 0 
In order to use the general theory to find a bound for the threshold amplitude we need 
to evaluate the norm of the resolvent in the unstable half-plane Re(s*) >, 0. For 
aR = 0 the following results holds for the scaled norm of the resolvent. 

THEOREM 5.  Let $zR,k = A k 1 l * ,  where M and L̂  are given irz (33) and (40). For 
aR = 0 and Re@*) 2 0,  l I ( s * I - ~ ~ ~ , k ) ~ l I / E * / R ~ C r  > 0 as R-t a. 

Remark. A similar estimate for the norm of the resolvent can be shown for all 
Re@*) > A,+C,, where A, is the eigenvalue corresponding to the least damped 
eigenmode and C,, > 0 and independent of R. 

The proof of the theorem can be found in Appendix B. 
For plane Couette flow it has been numerically demonstrated that the maximum of 

the resolvent for Re (s)* > 0 occurs for aR = 0 at s* = 0 (Trefethen et al. 1993). Thus, 
theorem 5 and (42) imply that the resolvent of the original linearized problem, 
11 (d- 

We can numerically find the constant multiplying the R2 dependence of the 
resolvent. We use a procedure similar to that of Reddy & Henningson (1993). The 
Orr-Sommerfeld and Squire eigenfunctions for plane Couette flow are first solved for 
using a Chebyshev method. The norm of the resolvent is then calculated from a 
truncated version of expansion (38). The result is shown in figure 1 where contours of 

E ,  grows proportionally to R2 as R + a. 

kll~;,f,II.lpR2 
are plotted for two Reynolds numbers. The contours coincide for low to moderate aR, 
showing that the scaling is not only applicable for aR = 0 but is also valid 
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approximately in a region close to the k-axis. The maximum is 0.0152 and occurs on 
the k-axis, in agreement with results given by Trefethen et a/. (1993). 

Recall that these norms are calculated for particular parameter combinations and 
that the norm of the resolvent for the full operator in the unstable half-plane is needed 
in the general theory in order to obtain the bound on the threshold amplitude. This can 
be found by maximizing the norms calculated above over all values of crR and k or 
equivalently over all values of a,@. The results above and (37) imply that 

max ~ ~ ( ~ / - 9 ) ~ ~ ~ ~  = R max II(.Y*/-S?:~,~)-~((~' = 0.0152R2. (44) 
Re(s )20  Ke ( a * )  > 0 ,  sK, Ic 

3.4. Threshold bound 
The result of theorem 4 in the general theory, together with the result (44) implies that 

ll(LZ+/>tfIl d cRpY, (45) 
where the initial perturbation is ~ f a n d  c is a number independent of R.  

4. Simulation results 
The above estimate of the critical amplitude for plane Couette flow is in the form of 

a lower bound. An upper bound of the critical amplitude can be constructed through 
an example. To this purpose we present numerical simulation results. 

The numerical problem was formulated as follows : find the smallest initial 
perturbation energy needed to generate solutions which grow to a turbulent amplitude. 
Since each set of initial data requires a full numerical simulation to determine if it 
results in a decaying solution or not, an exhaustive search of different shapes of initial 
data was not feasible. However, results for the Reynolds-number dependence of the 
critical amplitude for one set of initial data is sufficient as an example and thus to find 
an upper bound. 

The numerical method used to calculate the solutions is described in Appendix C. 

4.1. Domain and initial data 
The size of the domain was chosen as I ,  = 2n, 1, = n, see ( 3 ) .  The initial data used are 
given by 

@ = (1 -xi)' sin (2nx3/13) 1 
(46) 

(u,, u2, u3) = E(n1, n, + @z, n3 - I;.,).J 
Here E is the amplitude and n1-n3 constitutes white noise in the form of Stokes' modes 
with random phase, the amplitude of which was chosen so that the noise contains 1 % 
of the total initial perturbation energy. Stokes' modes are the eigenmodes to the flow 
equations without convective terms. The largest excited wavenumber was 3 in the 
streamwise direction and 14 in the spanwise direction, and for each wavenumber the 
16 least-damped Stokes' modes were used. 

This initial velocity field is, apart from the noise, in the form of two streamwise, 
counter-rotating vortices which span the full channel height. 

4.2. Numerical results 
Figure 2 gives the time history for the perturbation energy for some subcritical and 
supercritical amplitudes. We see that the subcritical simulations follow qualitatively the 
linear route of transient growth resulting from the forcing of the streaks by the vortex 
followed by viscous decay of the energy. For supercritical amplitudes we see four 
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FIGURE 2. Disturbance energy history at Reynolds number 1000 for initial energy density 0.00001 
(bottom curve) 0.00002, 0.00004, 0.00008 and 0.000 16 (top). 

distinct phases : transient growth similar to that for subcritical amplitudes, a rapid 
secondary instability leading to a transient peak of high amplitude, a similarly rapid 
decay to a turbulent state and finally irregular amplitude variations as the turbulence 
relaxes towards a statistically steady state for large times. 

The simulations for subcritical amplitudes are here converged to the precision of the 
graphics with respect to temporal and spatial truncation errors. For the supercritical 
amplitudes similar convergence is achieved up to and including the transition peak. 
However, beyond this time the results are not grid-independent. Indeed, because of the 
positive Lyapunov exponents in this turbulent state, results for different resolutions 
will start to diverge at some time regardless of how fine the grids are. In any case, 
experience has shown that the existence of the transition peak at this Reynolds number 
is sufficient to determine that the solution does not decay. 

To find the critical amplitude the simulations were continued until the energy in the 
wall-normal velocity component rose to turbulent levels, or until a time of about three 
times that of the first peak in the energy. If turbulence was observed in this time the 
amplitude was considered supercritical, and otherwise subcritical. In practice the 
solutions for supercritical amplitudes have a characteristic brief but rapid growth of 
the perturbation energy giving rise to a high transition peak as seen in figure 2, which 
makes the determination of critical amplitude unambiguous. The maximum length of 
the simulation needed to determine the evolution of the solution is proportional to the 
Reynolds number since the first peak in the energy appears at a time O(R). This value 
for the time of the maximum was found for linear perturbations lacking streamwise 
dependence by Gustavsson (1991), and is here found to be valid also for non-sustained 
nonlinear disturbances. 

Note that this procedure gives a critical amplitude which is finite even at or below 
the critical Reynolds number, since turbulence can develop even in the latter case, 
although it is not sustained. The issue of determination of the sustainment Reynolds 
number requires simulations to extremely large times and is outside the scope of the 
present work. However, for Reynolds numbers somewhat above the sustainment limit, 
which for plane Couette flow is about 360 (Lundbladh & Johansson 1991 ; Tillmark & 
Alfredsson 1992), the determination of the critical amplitude in the way presented is 
reliable. 

Figure 3 gives the critical perturbation energy for different Reynolds numbers. The 



Bounds f o r  threshold amplitudes in subcritical shear flows 187 
0.01 

E 0.001 

nnnni 

I 

.. 
: '-q 

.. 
-. Q.. 

- 

'. '. 
'. .. '. -.. 

0.. ._ 

500 1000 2000 4000 
R 

FIGURE 3. The critical perturbation energy as function of Reynolds number. The line is fitted to 
the data at R = 2000 and has slope -2. 
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FIGURE 4. The streamwise velocity at the centreline plane x ,  = 0 and t = 115. Initial energy 
density is 0.00008. Contour levels start at -0.45, spacing 0.1, with negative contours dashed. 

total inaccuracy with respect to temporal and spatial truncation errors, roundoff errors 
and the amplitude interval between subcritical and supercritical amplitudes is here less 
than 0.5 % up to Reynolds number 2000 and less than 2 % at 4000. For the critical 
perturbation energy the result is E,, 2000/R2 which corresponds to a threshold 
amplitude 

When comparing this to (459, E,, corresponds to \ \ .$I \ .  We have in this example 
dealt with a disturbance of constant form when varying the Reynolds number. Thus 
the same behaviour of the threshold is found for I( (9 +I) ~f' ( 1  apart from the viscous 
term in 9 which contributes a term of order R-'. 

The initial growth of this disturbance is a well-known linear effect of forcing of the 
streamwise velocity by the wall-normal component (Willke 1967 ; Ellingsen & Palm 
1975; Gustavsson 1991; Henningson 1991; Butler & Fareli 1992), resulting in streaks 
of alternating high and low streamwise velocity. The disturbances in the calculations 
are found to reach an amplitude of order one for all Reynolds numbers before the rapid 
secondary energy increase sets in. 

It is also interesting to briefly consider what effect is responsible for the secondary 
growth that immediately precedes breakdown to turbulence. Figure 4 shows the 
streamwise velocity in the centreline plane parallel to the walls for the second highest 

(47) E,, - R-I. 
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amplitude in figure 2 just after the appearance of the secondary instability. The high- 
and low-speed streaks have started to meander in the spanwise direction. Further study 
shows that the meandering rapidly increases until the streaks make a maximum angle 
of about 45" to the mean flow. The streaks then break down and disappear in a few 
units of time. The meandering appears to be an effect of a secondary instability caused 
by the large values of spanwise shear between the high- and low-speed streaks as the 
wave component responsible for the meandering initially decays and only starts 
growing when the streaks have attained a high amplitude. The spanwise profile of the 
streamwise velocity is clearly inflexional and although this in itself is not sufficient for 
instability, the high levels of shear here seem to be the cause of the growing wave, since 
there are no or only weak inflexions in the wall-normal profile. Further investigation 
either by linearizing about a state including streaks or by applying dynamical system 
analysis would certainly be helpful for the understanding of this phenomenon. 

4.3. Influence of the form of initial data 
A number of different initial perturbations were tried in the form of two-dimensional 
and oblique waves, streamwise vortices, wideband noise and various combinations 
thereof. For all disturbances involving a streamwise vortex, i.e. with energy in the wall- 
normal component at zero streamwise wavenumber, the same O(R-') behaviour for the 
critical amplitude was observed, but a t  a higher level than the chosen disturbance. 
Perturbations lacking this energy yielded critical amplitudes which decreased less with 
increasing Reynolds number. 

The noise, when added, serves the purpose of breaking symmetries. Otherwise 
certain symmetries in the initial data are upheld by the flow equations and can 
drastically change the result, in general giving an increase of the threshold amplitude. 
The symmetries which are not broken without noise are two-dimensionality for waves 
with no variation in the spanwise direction and streamwise independence for vortices 
and streaks without variation in the streamwise direction. The exact form and 
amplitude of the noise is found to have negligible effect on the results as long as it is 
free of symmetries. 

Finally, some parameter study was performed for the chosen disturbance. The 
streamwise period was varied and it was found that lengthening the box would bring 
down the critical energy density slightly but that the total critical energy would increase 
due to the larger domain. Similarly a shortening of the box would increase the critical 
energy but decrease the total critical energy. In both cases this was accompanied by a 
change in the wavelength of the meandering. 

In contrast it was found that both the critical energy density and the total critical 
energy were higher when the spanwise period was either increased to 4 or decreased to 
2 from the present value 7c at Reynolds number 2000. Thus both the critical 
perturbation energy and the critical energy density have minima between these values, 
but naturally do not occur for the same spanwise period. 

5. Discussion 
In this section we want to discuss the difference between the theoretical threshold 

bound for Couette flow, which is order R-9, and the threshold of order R-l found from 
numerical experiments. We shall first consider a simple example which incorporates a 
number of essential properties of the Navier-Stokes equations. Although the model 
problem has not been derived from the Navier-Stokes equations directly, we will give 
an interpretation of the dependent variables in terms of quantities appearing in the 
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Navier-Stokes equations. We will also show how to modify the Laplace transform 
method to get sharp results for the model problem and subsequently discuss its 
implications for the Navier-Stokes equations. 

5.1. A model problem 
Consider the problem 

i u, = Lu+g(v)+F(t),  t 3 0,  
u(0)  = J  

-R-' 1 
Here L = (  0 -R-l 0 ), v =( i;). F(t) =(q. (49) 

0 0 -1  4 ( t )  

Note that the resolvent of the corresponding linear problem satisfies 

~ ~ ( s / - L ) ~ ~ I I '  < /ILp1112 < CR4 (50) 

for all s with Re (s) 3 0, and that the associated solutions decay as t + a, even though 
they may grow initially. Here 1 1  . 1 1  denotes the usual l2 norm for matrices. 

We shall consider the following nonlinear term: 

It is clear that the resolvent in this model has the same Reynolds-number dependence 
as the resolvent of the linear operator in plane Couette flow. The nonlinear term of the 
model problem also incorporates essential features of the corresponding terms in the 
Navier-Stokes equations. This will be further discussed below. 

By considering the following example we construct an upper bound for the threshold 
amplitude. Let f = 0 and 

1 i f t < R  
F =  i h ( t ) ( i ) ,  h(t)  = {  0 otherwise. 

A simple analysis yields that the solution is non-vanishing if 

E > C, R-'. 

1; IFI2 dt > c, R-3, 

Note that this corresponds to 

( 5 3 )  

where 1 .  I is the 1, norm for vectors. Next we consider (48) with F = 0 and initial 
condition 

f = &f). 

Similarly the solution is non-vanishing if 

E > C, R-I. 
7 

(54) 
t L M  270 
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A straightforward application of the Laplace transform method yields the linear 

Here w satisfies the corresponding linear problem with forcing H(t) and homogeneous 
initial conditions and 

(u, Lu) A, 
IUl2 

for all vectors u. h is a bound on the numerical range or equivalently a bound on the 
normalized growth rate. 

The nonlinear term satisfies 
tg(u)i% G 10i4, 

and as in $2 we apply the linear estimate (55) and derive the following sufficient 
condition for nonlinear stability, in the case of homogeneous initial condition and a 
forcing function F:  

1:IFI'di < ;(2(A+1) ]If-'lj2+ 1)-2 = CR-'. (56) 

Note that there is a discrepancy between this result and the upper bound given by 
(53). In the case of an inhomogeneous initial condition we introduce 

u = v+e-tf, 
and obtain a problem of the above type with forcing F =  eCt(f+ff). The Laplace 
transform method yields the following sufficient condition for stability 

Again, there is a discrepancy, cf. (54). Apart from the term -5, which originates from 
the Sobolev inequality (10) and the spatial derivative in the nonlinear term, the 
difference is the same as that found between the theoretical threshold bound (45) and 
the threshold for the numerical example (47). Thus we have a model problem which 
behaves essentially the same as the complete problem studied initially. 

We shall now improve the results of the Laplace transform method used on the 
model problem. Consider first the case with homogeneous initial conditions. Note that 
there are two timescales present. The corresponding linear problem can be separated 
into two parts with different timescales: 

a 
at 
-w3  = -w3+H3. 

Each part can then be appropriately scaled. In (58) we introduce 

t* = R-lt, w* = ([;I, 
(59) 

yielding W$ = f *w* + H*,  

L* = (;I J1), H" = (R2H,J .  RHl 
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The transformation to w* corresponds to introducing a weighted norm. We can 
derive an estimate equivalent to ( 5 5 )  for w*, where 

A* 'v 1, IlL*-111 'v 1. 

We derive a similar estimate for w, directly. If the linear estimate for w* is restated in 
the original scales and the linear estimate for w g  is added, we have 

J o  

6 CloT (RIH,(t)12 + R3lH2(t)l2 +R:IHg(t)(2) dt. (63) 

We apply the linear estimate (63) to the nonlinear problem and find that a sufficient 
condition for stability is 

6:: (RIF,I2 + R314;12+ R;IF,l2) d t  G C. 

Clearly, by comparison to (53) this is a sharp result for the condition on j; IFI2dt. 
In the case of inhomogeneous initial data and F = 0 we introduce 

ect *f, 
u = v +  ePtf, 

(e-yg 1 
and obtain a problem of the previous type. A sufficient condition for stability in this 
case is 

Rilf,l + RlfJ + R+If,l G c. 
Again this is a sharp result for the condition on Ifl, cf. (54). 

For initial data the model problem (48) has the same threshold as the numerical 
simulations in 54 indicated for plane Couette flow. Though the model problem has not 
been derived from the Navier-Stokes equations directly, it is possible to interpret the 
dependent variables in (48) as follows: v1 corresponds to the amplitude of a streamwise 
streak, i.e. a perturbation in the streamwise velocity with zero streamwise wavenumber; 
u, corresponds to the amplitude of the streamwise vortex driving the streak, i.e. a 
perturbation in the wall-normal and spanwise velocity at zero streamwise wavenumber. 
Thus, v1 and v, corresponds to two linear eigenmodes associated with the same 
wavenumber. Finally, u, corresponds to the amplitude of, possibly oblique, waves, i.e. 
Fourier components with non-zero streamwise wavenumber. Note that the Reynolds- 
number dependence of the eigenvalues for the streak and the vortex and their linear 
coupling are also in agreement with those of the linearized Navier-Stokes operator, see 
e.g. Gustavsson (1991). 

The nonlinear terms incorporates some, though not all, of the structure as of the 
corresponding terms in the Navier-Stokes equations. They are quadratic, and 
components corresponding to the same wavenumber do not interact nonlinearly. 
Instead they couple through interactions with other Fourier components. However, the 
nonlinear terms in the Navier-Stokes equation are energy conserving, a property which 
is not satisfied by the model. Although this can easily be accomplished by adding 
further nonlinear terms, see e.g. the model proposed by Henningson & Schmid (1992), 
we have omitted this in order to simplify the problem. Adding the appropriate terms 

7-2 
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does not change the threshold amplitudes and the above method of analysis is 
applicable. Perhaps surprisingly, this indicates that the energy conservation property 
is not important for the asymptotic behaviour of the threshold amplitude. 

5.2. Implications f o r  the Navier-Stokes equations 
For the Navier-Stokes equations there are two apparent ways to proceed to derive a 
sharper bound : 

(i) The full equations are written in the form of the linearized problem (33) in the 
variables w, and 5,. Let q = (w2, (JT; the norm to use with this expansion is then given 

1/4112 = c [RZJ 1 ~ l ~ z , ~ . l ~ + ~ l D ~ % , ~ ~ l ~ ) d l , + ~ J ~ l  1 l 1  l12,??&nl~d~z]  (64) 
by 

m ,  n -1 k m .  

with appropriate modifications for m = n = 0. Here m, n and k,,, are defined as in (32) 
and (33). When the scaling (39) is applied it is clear that the norm of the resolvent based 
on (64) for aR = 0 is independent of Reynolds number. However, in this case the norm 
of the resolvent might be larger for aR =I= 0. Both the norm and the nonlinear term are 
in this case most easily defined in Fourier space, which most likely means that the 
threshold bound must be derived for the transformed equations. Furthermore, in view 
of the results for the model problem there is little hope that use of this norm alone will 
be sufficient to find a sharp estimate, since differences in timescales between the modes 
would most likely also have to be incorporated. 

(ii) The original formulation (1) is retained but the norm is replaced by 

where r is a constant and the time is rescaled as in (39). In principle it is straightforward 
to evaluate the norm of the resolvent associated with this norm and the results of $2 
are then directly applicable. If r = 2 this norm is equivalent to the one given above in 
(i) for aR = 0. Since the norm of the resolvent in this case also might be greater when 
aR $. 0 a lower value of r might give the sharpest bound on the threshold amplitude. 
Again with reference to the model problem we expect that the components need to be 
further subdivided to arrive at a sharp result. 

A further reason why the theoretical bound is not sharp is that the Sobolev 
inequality (10) is sharp only for components with small spatial scales. However, the 
largest linear growth appears for scales of order one or larger. Therefore, it might be 
necessary to split the dependent variables into two or more scales and to weight the 
norm for each of these. Another way to proceed here would be to replace the estimate 
of the nonlinear terms (26) with an expression which is sharp for the relevant scales. 
A promising route here is to estimate the norm of the quadratic terms by products of 
higher- but finite-order norms by use of Holder's inequality. Imbedding theorems then 
allow estimation of these higher-order norms in terms of the regular L, norm. 

In future work we hope to improve the theoretical predictions along these lines. 

6. Conclusions 
A threshold amplitude below which all disturbances regardless of form eventually 

decay has been derived for a subcritical, bounded, parallel shear flow. Stability was 
thus proven when the initial perturbation u fulfils l I 9u  + ull , < CR-;/ I1 (2 - s0-l ( I  '. 
From numerical evaluations of the norm of the resolvent the nonlinear stability of 
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plane Couette flow was shown when ~/LFu+uI / ,  < cR-Q. This constitutes a lower 
bound on the threshold amplitude. Previous results of similar generality are unknown 
to the authors, although for plane Couette flow Romanov (1973) has proved that such 
a threshold amplitude exists without providing an expression for it. 

For numerical simulations an upper bound on the threshold amplitude was found 
to be proportional to Rpl. A disturbance in the form of a streamwise vortex pair with 
a spanwise wavenumber between n/2 and .n and a superimposed low-amplitude 
wideband noise was found to give the lowest threshold amplitude among the various 
initial disturbances investigated. The vortices generated streaks of alternating high and 
low streamwise velocity which broke down from a secondary instability in the form of 
a rapidly increasing spanwise meandering. The noise here served only as a symmetry 
breaker to set off the secondary instability and its exact form was found to be 
unimportant for the result. 

The results presented fill a gap in the knowledge of the behaviour of disturbances in 
the parameter regime between the upper limit of monotonic decay of the energy R, and 
the lower limit of linear modal growth R,. The results are more general than the 
steady-state solutions found for certain flows in this regime in that they apply to any 
initial perturbation. We also note that they are applicable to space-periodic and 
localized disturbances alike. The latter is true as theorems 1-4 give threshold bounds 
which are uniformly valid with respect to the spatial period I ,  and 13, i.e. they are also 
valid for an infinite strip. 

It was further demonstrated how the theoretical results can be improved by reverting 
to other norms than that corresponding to the disturbance energy. This was 
accomplished by rescaling of certain components of the flow field and by rescaling of 
the time for some components so that the scaled time for the linear behaviour was 
order one. Besides the improvement of the bound, the scaled norms may provide 
additional understanding of the transition process by assessing the relative importance 
of different components of the initial disturbance. 

Similar results can be derived whenever a bound on the norm of the resolvent exists, 
for example for plane Poiseuille flow below the critical Reynolds number for modal 
growth. The results may also be extended to other bounded geometries such as 
Hagen-Poiseuille and Taylor-Couette flow although the technique in the proof of 
theorems 1-4 has to be adapted. For shear flows in unbounded domains, e.g. boundary 
layers, the norm of the resolvent is in general unbounded, precluding the 
straightforward application of the presented theory. However, if it is assumed that the 
most critical disturbance has support only in a bounded domain, a model problem with 
a restricted domain is pertinent. For this model a lower bound on the threshold can be 
constructed, again provided the Reynolds number is subcritical. A further complication 
in the boundary-layer geometry is how to incorporate the non-parallel effects. 

Whereas the lower bound on the threshold amplitude in its present form is not a 
sharp result, its mere existence and reasonable magnitude justifies a search for the 
threshold amplitude and corresponding critical disturbance by experimental or 
numerical techniques. 
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Appendix A. Proof of theorem 1 
First we prove two lemmata. 

LEMMA 1. Assume that there is a constant y(R) E [0, yJ such that the resolvent condition 
(20) is satisjied for  all s with Re(s) 2 - y. Then 

IlI?IlX d ~ , R P I l f i l 1 2 ,  (A 1) 
for all s with Re (s) 2 - y .  Here c, depends on thejirst and second derivatives of U and 
on the constant C in (21). 

Proof. Multiply (19) by I? and integrate. After partial integration we obtain 

R-lJ?(I?) = -Re (s) 1161\' + Re (I?, ( U . V )  6+ B6+ V&) + Re (I?, fi). 
Note that -Re(s) < y1 and BG = (6-0) U. By partial integration it follows that 

(6, ( U .  V) 6) = 0, (G, VP,) = 0. 

I( 6 / 1 2  + R-lJ:(I?) < El RPI( fill? 

Note that all boundary terms vanish since I? vanishes at the walls. Hence 

Here el depends on the first derivatives of U and on the constant in (21). Next we 
differentiate (19) with respect to x,. As above we obtain after partial integration 

R-'(IlD;+l12+ IIDlD,~l12+ llD,D3~l12) 
= -Re(s) JJD,611(2-Re((Dl $,(Dl U-V)$)+(D, 6,DlB6)+(D~I?,fi>). 

Since we have differentiated in a direction tangential to the wall all boundary terms 
appearing after partial integration vanish. We can estimate the right-hand side in terms 
of //I?l/2, J:(I?) and llfil12. By differentiating in the other tangential direction, x3,  we 
obtain a corresponding result and the lemma follows. 

LEMMA 2. Assume that there is a constant y(R)  E [0, yJ such that the resolvent condition 
(20) is satisjied for  all s with Re (s) 2 - y. Then 

< c3 RP sf e2yt 1 1  H( * , t )  1 )  dt .  

Here e3 depends on thejirst and second derivatives of U and on the constant C in (20). 
Proof. By lemma 1 and the Parseval relation it follows that for any 7 2 - y 

Since for t < T the solution does not depend on function values H( -, t )  where t > T we 
can in the above inequality assume H = 0 for t > T. Let 7 = - y  and we have 

~ o T e 2 f l ~ l w ~ ~ ~ d t  < C,Rf (A 2) 
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Multiply (18) by w and integrate. As in lemma 1 integration by parts yields 

(A 3) 
I d  
2 dt -- Ilw112+R-1J:(w) < (I&+;) llwll2+;lIHll2, 

where ISl, = max,,, llSl12. Consider (18) differentiated with respect to x1 and x3. 
Similarly we obtain 

I d  
-- (IID, w II ' + I /  D, w 11') +;R-'(IID? 2111 ' + II D, D, w ll ' + /ID, D, wll' + I1 Di w I1 '1 2 dt 

< c4(J ; (w)+  Ilw112)+~RIIH112. (A4) 
Here c4 depends on the first and second derivatives of U. Thus 

d -(e2Y'(llwl~'+RR-11/Dl w11'+ R-lIID, wll')) dt 
< c5(e2YtII w1I2 + R-'Jq(w)) +2e2yt llH11'. (A 5 )  

Integrate (A 5)  from 0 to T, combine the result with (A 2) and the lemma follows. 
Proof of theorem 1. By (A 3) and (A 4) we have 

R-' ezyt( IlD: w 1 1 '  + IID, D, w II + IID, D, w 1 1  ' + IlD; w I1 ') 
R-1e2ytJ:(w) < e2yt((l&+;) Ilw11'+~IIHi1'+ IIwtll Ilwll), (A 6) 

6 e2yt(2GR-l(J:(w)+ l l ~ l I Z ) +  IIH/12+2R-1(IID1wtII IID, WII + llD,wtll lID,wll)). 
(A 7) 

To estimate the time derivatives of w we differentiate (1 8) with respect to t. Clearly wt 
satisfies (18) with forcing Ht and initial condition wt(x, 0) = W(x, 0). After a 
transformation of type (14) with 6 = y1 + 1 we can apply lemma 2 obtaining 

Combine (A S), (A 6), (A 7) and lemma 2 applied to w, and the theorem follows. 

Appendix B. Proof of theorem 5 
For aR = 0 the individual operators @&. = M-'i* os and @& =Akli* S Q  are 

normal, i.e. they commute with their adjoints. For a normal operator, the norm of the 
resolvent can be calculated (Kato 1976): 

1 
dist (s, A }  ' Il(s/-9)-111 = 

where A is the set of eigenvalues of 9 and dist {s, A }  denotes the distance between s and 
the closest eigenvalue in the set A .  

The eigenvalues of the scaled operators are 

where @:,, and & are eigenfunctions of the scaled Orr-Sommerfeid and Squire 
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operators, normalized such that l/S: I / ?  = 1 and ~~~~~ = 1 .  The eigenvalues are ordered 
such that the damping rates increase withj. 

Since both the Orr-Sommerfeld and Squire eigenvalues for the scaled problem at 
crR = 0 are real and negative, the square of the shortest distances to the two spectra 
from a point in the unstable half-plane are (AT ' " -S : )~  +sT2 and (ATLyQ -s,*)' + s L ? ; ~ ,  
respectively, where s,* = Re (s*) and s: = Im (s*). From the component form of the 
Laplace transform of the scaled version of the initial value problem one finds 

Substituting into (42) yields 

1 
(a+S;)'+s:2 

< (B 4) 

where 6 = min{lhTo"I, IhTSQl$. 
The above expression grows like R2 as R becomes large. This implies that the norm 

of the resolvent for the scaled problem cannot grow faster than R as R+ 00. By 
introducing (43) into (42) and choosing ll(*(O)il = 0 it is easily verified that this result 
is sharp. Thus, the norm of the resolvent grows proportionally to R as R+ GO for 
aR = 0. This completes the proof of theorem 5. 

The right-hand side of (B 4) has a maximum for s = 0. This does not prove that the 
norm of the resolvent has a maximum for that s since (B 4) is an inequality. The 
numerical calculations of Trefethen et al. (1993) referred to above, however, show that 
the maximum is indeed at that position. 

Appendix C. Numerical simulation method and error estimates 
A spectral method was employed to solve the incompressible Navier-Stokes 

equations, with Fourier representation in the streamwise and spanwise directions, and 
Chebyshev polynomials in the wall-normal direction. The nonlinear terms are treated 
pseudo-spectrally using FFTs, in a manner similar to that of Kim, Moin & Moser 
(1987), although here instead of the variables themselves, their second derivatives are 
expanded in Chebyshev series (Greengard 1991). This results in better numerical 
accuracy since the need for the evaluation of ill-conditioned Chebyshev derivatives is 
virtually eliminated. The time advancement used was a third-order Runge-Kutta 
method for the nonlinear terms and a second-order Crank-Nicholson method for the 
linear terms, with a time step dynamically kept at 90% of the theoretical CFL limit. 
Aliasing errors from the evaluation of the nonlinear terms were removed by the $-rule 
when the horizontal FFTs were calculated. The complete numerical method for the 
channel flow geometry is described in Lundbladh, Henningson & Johansson (1 992). 
The code has previously been used in e.g. the study of Lundbladh & Johansson (1991). 
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Reynolds 
Amplitude number 
Critical 500 
Critical 1000 
Critical 2000 
Critical 4000 
Subcritical 1000 
Supercri tical 1000 

Low 
resolution 
1 6 x 4 9 ~  16 
8 x 4 9 ~  I6 
8 x 49 x 24 
8 x 49 x 24 
8 x 4 9 ~ 1 6  

24 x 65 x 24 

High 
resolution 

24 x 65 x 24 
12 x 65 x 24 
12 x 65 x 32 
12x  65 x 32 
12 x 65 x 24 
32x81 x32  

TABLE I .  Numerical resolution for different physical parameters: number of spectral modes used 
in, respectively, the streamwise, wall-normal and spanwise directions 

All numerical results presented have been checked for effects of finite resolution by 
repeating the simulations with identical data but with lower resolution in all spatial 
directions and time. Table 1 gives the resolution for each of the simulations. The four 
first rows refer to the determination of the critical amplitude and the last two to the 
simulations for results shown in figures 2 and 4. The numerical error was taken as the 
difference between the result from the high and the low resolution, while the results 
presented are from the high resolution runs throughout. The roundoff error was 
checked for the determination of the critical amplitude at the highest Reynolds number 
by comparing to a simulation with one bit truncated in all of the elementary 
operations. 
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